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1 Introduction 
Standard Chebyshev spectral methods applied to compressible flow problems 

have some severe restrictions [7]. The computational domain must be simple enough to 

map onto a square, in two space dimensions, or a cube in three. To increase spatial 

resolution the polynomial approximation order must be increased. For high orders, the 

derivative approximations must be performed with Fast Fourier Transform methods to be 

efficient. If matrix multiplication is used instead, the work grows too rapidly with the 

number of degrees of freedom to be practical. Finally, the time step restrictions are 

severe since the time step decreases asymptotically as the square of the order of the 

approximating polynomials. 

The basic premise of a multidomain method is that these restrictions can be 

reduced by subdividing the computational domain into multiple zones, called 

subdomains, on which the spectral approximation is applied. As a result, the method can 

be used on more complex geometries. The use of lower order approximating 

polynomials in each subdomain means that matrix multiplication can be both efficient 

and accurate, and the time step restrictions need not be as severe. A discussion of the 

advantages of multidomain methods over the single domain method was presented in [24] 

and has been updated in [19]. 

Less than a decade after they were first introduced[24], the bulk of the spectral 

multidomain methods for that have been proposed compressible flows or similar 

hyperbolic problems still define the solution unknowns at the nodes of the Gauss-Lobatto 

quadrature, just as in a single domain method. Examples include [33], [25], [29] and [3] 

for general hyperbolic problems, and [26] for the Euler gas-dynamics equations. 

Methods for the advective terms of the compressible Navier-stokes equations were 

presented in [18] and [19]. An interesting method for coupled acoustic and elastic wave 

interactions was proposed in [1]. 



The main differences between the Lobatto grid methods are whether the equations 

are written in conservative or non-conservative form, and the manner in which the 

interfaces are treated. The conservative form of the equations was used, for example, in 

the methods presented by [18] and[4]. Non-conservative forms were considered in [33], 

[26] and [1]. We will show below that the use of the conservative form of the equations 

does not guarantee that the method is globally conservative, since the interface treatment 

may lead to loss of conservation. 

Two approaches have been used at subdomain interfaces to ensure that waves 

propagate properly through them. The two methods were contrasted in [25] and are 

considered in more detail in [3]. At least two values of the normal derivative are 

available an interface point, depending on the number of subdomains that have that point 

in common. One interface method integrates a differential compatibility equation for the 

points along the interface [24], [33], [18], [3]. Derivatives are chosen from appropriate 

subdomains so that wave components are "upwinded". The other approach uses a 

correction procedure ([25], [26], [1], [4]). To implement the correction method, the 

interior point approximation is integrated everywhere, including at the boundaries. As a 

result, multiple solution values are available at each interface point. A characteristic 

combination of these solutions is then made to correct the solution for the propagation of 

waves across the interface. 

Each interface treatment has its advantages and disadvantages. Integrating the 

differential equation means that the solution can be approximated to any order accuracy 

in time, depending on the choice of the time integration scheme. Implicit time integration 

schemes can also be used[3]. The serious disadvantage is that the tangential space 

derivatives must be continuous across subdomain interfaces in more than one space 

dimension. This requirement severely restricts the types of geometries on which solutions 

can be computed, since it means that the Jacobians of the transformations of the 

mappings between the subdomains and the unit square must be continuous across 



subdomain interfaces. The correction scheme, on the other hand, does not require 

smoothness of the grids, since only the solution values are required at the interfaces. 

However, the temporal accuracy of the correction method is limited to first order. (C.f. 

[7], page 245.) 

A disadvantage shared by the two interface treatments is their complexity. Either 

method is simple to apply in one space dimension. In two space dimensions a choice 

must be made at corners to determine from which subdomains the solution bi- 

characteristics must be computed. Special algorithms can be developed for the 

approximations at the corners of subdomains [26], but if more than four subdomains meet 

at a single point, the choice can be even more complex. 

A very different multidomain approximation is based on the Chebyshev cell 

averaged grid originally proposed by Cai et al. [5]. In this method, "cell" averaged 

quantities are defined on the Gauss-Chebyshev grid, while fluxes are defined at the more 

usual Lobatto points [35], [15], [16]. The cell averaged method avoids many of the 

disadvantages of the methods just described. It is fully conservative, and it can be 

approximated to any temporal order of accuracy. It is also geometrically flexible because 

it does not require continuity of the transformations across interfaces. In more than one 

space dimension, the method does require special attention at the corners of subdomains. 

Currently, a simple average of the multiple solutions is computed and broadcast to all 

contributing subdomains [16]. 

In this paper, we present a new multidomain spectral collocation method for the 

solution of compressible flow problems. The new method is based on a staggered grid, 

analogous to fully staggered grids often used with finite difference methods. The 

solutions are defined at the nodes of a Gauss quadrature rule, and the fluxes are evaluated 

at the nodes of a Gauss-Lobatto rule. Staggered-grid spectral approximations were first 

proposed for the solution of the incompressible Navier-Stokes equations. (C.f. [7], page 

234.) Our grid will be identical to the fully staggered grid of Bernardi and Maday [2]. 



The staggered grid multidomain method for compressible flow problems has all 

the desirable features found in the methods discussed above. First, like the cell averaged 

method it is conservative. Thus, it should be possible to apply shock capturing 

techniques to the approximation. Subdomains can be defined independently of their 

neighbors, so the method is geometrically flexible. The interface condition can be 

computed to the same temporal accuracy as the interiors. However, in multiple space 

dimensions the method does not include (the Gauss rules being open) the corners of 

subdomains. Thus the coding of the method does not require special cases at corners, and 

any number of subdomains can meet at a point without difficulty. 

The paper is divided as follows. The algorithm is presented in the next section for 

problems in one space dimension, along with definitions of the notation used throughout 

the paper. We show that the staggered grid method is conservative, while methods that 

upwind derivatives are not. A scalar problem and a linear system will be used as 

examples to show that the method is exponentially convergent for smooth problems. 

Though we will be concerned in this paper primarily with steady problems, an example is 

included to show that high order temporal accuracy can also be obtained. In Section 3, 

we describe the algorithm in two space dimensions. We show that the method remains 

conservative and is also free-stream preserving. Section 4 provides three examples of the 

use of the method for two-dimensional problems. The first problem is that of a point 

source flow, for which there is an exact solution. We show that exponential accuracy is 

obtained for this problem. The second problem is a subsonic flow over a circular bump 

in a channel, and we show that the entropy errors decay exponentially fast. Finally, we 

solve a transonic flow in an axisymmetric converging-diverging nozzle and compare the 

results to experimental data. Concluding remarks are then made in the Section 5. 



2 The Staggered Grid Approximation in One Space 
Dimension. 

2.1 Notation 

The staggered grid approximation uses two grids to compute the solution values 

and advective fluxes.   Unlike the common Chebyshev approximation [7], which uses 

only the nodes of the Gauss-Lobatto quadrature as collocation points, the new method 

uses both the Gauss and the Gauss-Lobatto points. We denote the points on the two grids 

by the Lobatto points, Xj, and the Gauss points, XJ+l/2, 

X-2 
1-cos^jj   j = 0,l,...,N 

1 
*,-+l/2=-U - cos -^- 

+ 1 
-It 

(1) 
j = 0,l,...,N-l 

2V K2N + 2   J) 

In (1), we have mapped the usual collocation points defined on [-1,1] to the more 

convenient unit interval. The overbar and half point notations for the Gauss points are 

used only for their value as an analogy to staggered grid finite difference methods. It 

must be understood that the Gauss points do not lie halfway between the Lobatto points 

[7]. 

Two polynomial approximations are defined, one for each grid. Let the space of 

polynomials of degree less than or equal to TV be denoted   PN. Let ij{E,)ePN be the 

Lagrange interpolating polynomial 

^)=n 
N U-x^ 

i=0 

(2a) 

defined on the Lobatto grid. On the Gauss grid, we define hj+ll2 e PN_: to be the 

polynomial 

w*)=n 
N-if    ^_Xi A 

i=0 

•i+1/2 

V^ ^7+1/2 X: + 1/2 

(2b) 



Finally, let Qj be a grid point value on the Lobatto grid and Qj+m be a value defined on 

the Gauss grid. Then we write the polynomials that interpolate these values as 

Ö(X) = Xö/;-W (3a) 

ß(X) = X(5+1/2W*)- (3b) 
;=0 

2.2 The One -Dimensional Staggered Grid Approximation for Scalar Equations 

To motivate the staggered grid approximation, we consider the approximation of 

scalar problems of the form 

ut+fx(u) = 0   df/du>0,x<=[a,b],t>0 

u(x,0) = uQ(x) (4) 
u(a,t) = g(t) 

The interval [a,b] is subdivided into multiple, non-overlapping subdomains, & =[ak,b]&, 

k = 1,2,...,K, which are ordered left to right. A simple linear transformation can be made 

to the unit interval, so that on each subdomain we solve the problem 

",+—/*(") = 0     Xe[0,l],?>0 (5) 
xx 

On each subdomain is placed the staggered grid defined by (1). For convenience, 

we will assume that the same number of points is used in each subdomain, but this is not 

required by the method. We then let Uk (X) e PN_r, defined by (3b), approximate the 

exact solution, u on Qk. Similarly, the flux is approximated by the polynomial 

Fk(X) € P^, defined by (3a). Substitution of these approximations into (5) gives 

^+±^1 = R^X)   k = l,2,...,K (6) 



To obtain the equations that define the solution unknowns at the Gauss points, we require 

that the residual, R, be zero at the Gauss points of the subdomain. This leads to the 

collocation approximation 

dUk
n      1  dF*(Xi+,„) 

—Z11Z1 + J v  }+mJ=0   j = 0,l,...,N-l (7) 
dt        xx        dX 

The spatial derivative operation in (7) can be evaluated as the multiplication of the 

vector of flux values by a derivative matrix, D. From (3a), we see that 

dFk(Xi+m)     N 

=Mx,+i/2K=5X.^ (g) oX „=0 „=o 

so we write 

dFk 

dX j+l/2 

(OFM       = YJdinF
k

n. (9) 

Thus, (7) can be written in vector form as 

— + DF*=0   k = l,2,...,K (10) 
dt 

where Ü* =[Ul
U2 V\n ...U

k
N_mf ,Fk =[Fk

0 Fk... Fk
Nf. 

To compute the flux values on the Lobatto grid, we use the following 

reconstruction procedure. We first evaluate the interpolant Uk(X) e PiV_1 at the Lobatto 

points by multiplying the vector of solution values by an interpolation matrix, I. 

AT-l N-l 

u(Xj) = y£un+1/2hn+m(xj) = X/;,„+1/2£/„+1/2 (ID 
n=0 n=0 

The family of characteristics of (5) runs left to right. Thus, we expect the use of the 

solution extrapolated to the left subdomain boundary to lead to an unstable procedure. To 

provide the proper characteristic domain of dependence, we use the boundary condition 

to define the j = 0 value on the furthest left subdomain. At subdomain interfaces, where 

two values Uk~\l),Uk(0) are available, we choose the value computed from the left side 



of the interface. The result is an upwind evaluated approximation at both the left 

boundary and the interfaces. The fluxes, Fj, are then computed from the solution, values 

on the Lobatto grid. 

The method imposes the boundary conditions, weakly, through the definition of 

the flux, since the discrete solution values are not used directly at the boundary or 

interfaces. To see this, consider the single domain approximation of (4) for/= u. Then 

we can write the flux F(X) = U(X) e PN in terms of the interpolant U(X) and the 

boundary condition as 

U(X) = Ü(X) + [g-Ü(a)]t0(X), (12) 

so that the polynomial U(X) satisfies 

\U(Xj)   j = l,2,...,N 
U(X}) = \       [ (13) 

Then (7) can be written as 

dU;.,n 1       _ I _ 
—^ + — U'(XJ+m) = —lUXX0)-g]t'0(Xj+m)   j = 0,l,...,N-h       (14) 

Thus, the boundary condition is imposed indirectly at each collocation point through the 

penalty term on the right. 

Equation (10) is a system of ordinary differential equations that must be 

integrated in time to get the approximate solution values at the Gauss points. In principle, 

any common integration procedure can be used. We have chosen to use low storage 

Runge-Kutta methods that require only 2-N storage locations. For the computation of 

steady-state problems, for which the time discretization is only an iterative procedure, we 

have used a mid-point rule, 

At 1  dFk'n 
j j K,n+llA    T7k'n 

1+112  ~ }+m   iYx^x j = 0,l,...,N-l 
j+l/2 

  1      3p*,n+l/2 

Uk'n+1 =Uk'n   -At ' i+112        ^ j+l/2 xx     dX 

(15) 

j = 0X...,N-l 
y+l/2 



This method appears to have a good balance between the time step that can be used and 

temporal damping introduced by the scheme. With additional knowledge of the 

eigenvalue structure of the differentiation matrices, other choices might include schemes 

optimized for rapid convergence to steady-state, such as those discussed in [11], [10] and 

[9]. 

For time dependent problems, we have used the third order 2-N storage method of 

Williamson [39], and the more recent fourth order scheme of Carpenter and Kennedy [8]. 

We note that it should also be advantageous to use the new low storage Runge-Kutta 

methods derived by Hu et al. [21], which are optimized to minimize the phase and 

dissipation error introduced by the temporal approximation. 

To summarize the staggered grid procedure, we present the following algorithm 
for the scalar problem described above: 

Algorithm  I.    (Staggered Grid,   Scalar,   ID) 

1.   Interpolate U = [ü1/2,TJ3/2,...,ÜN.1/2]    to  the  Lobatto points: 

Compute the matrix-vector product Ufc = I*U* defined by (11) for each subdomain 

2.Compute the flux values at internal points on Lobatto Grid: 

Fj=f(U^)   j = l,2,...,N,k = l,2,~,K 

3.Apply boundary and  interface  conditions: 
^ = f(§) 

Fl=f{Uk
N~

x)   k = 2,3,...,K 

4.Differentiate Flux and evaluate on Gauss grid by subdomain: 

Compute the matrix-vector product D^F* k = l,2,...,Nby eq. (9). 

5. Update the solution by subdomain: 

Integrate (10) by the chosen ODE solver, repeating Steps 1-4, as necessary. 

6. Repeat   1-5 until done. 

9 



We note that the method requires two matrix-vector products per Runge-Kutta 

stage. This is twice the work of a Lobatto grid method, or of the cell-averaged method. 

Thus, there is no speed advantage for the method in one space dimension. 

A desirable feature of the staggered grid approximation, (7), is that it is 

conservative. To show conservation, we define the quadrature 

N-l 

\F(X)dX = JjFj+mw]+m    VFePN_ 
o j=o 

l 

wj+U2=jhj+l/2(X)dX 

j=0 

(16) 

For each;', we multiply (7) by xxwj+l/2. The sum over all points and all subdomains is 

K   N-l 

k=l j=0 

f   dU ^ k  aUj+U2        F,k 

KX        dt i+ll\ 
= 0. (17) 

Now, U ' (X), F' (X) e PJV_1, and xx is a polynomial of degree zero, so we can replace the 

sum over j by integrals to get 

i=lo" 
lj4^+nwW=o. as) 

Upon integrating the flux derivatives, the interface contributions cancel, and 

j\fj\Uk(X)xk
xdx\ = F1(0)-FK(\) (19) 

In contrast, a multidomain method defined on the Lobatto points, where the 

upwind value of the flux derivative is used at the interface (e.g., [18]) is not truly 

conservative. To show this, it is sufficient to consider two subdomains, QL and OR
 for 

which xx = 1. Using the upwind derivatives at the interface, one integrates the following 

system of equations 

10 



UL
0=g 

dUL 
dU^--V'L    7 = 1,2 iV-1 
dt i 

dU« 

dt 
---F]R 

dUL
N _ _dU* 

dt dt 

dUR
N_ -      J7'R 

--*N 

j = \,2,...,N-l 
(20) 

-F'L 

dt 

We then multiply each equation by its associated Clenshaw-Curtis weight [7] and sum to 

get 

"dU?    L     »dUf   R y—-wf+y—j-wf = 
n dt    3    U dt    j 

= ^(F;L
+^)-±wfF'J

L-±W?F'/-w«[F'N
L-F'0"} (21) 

= FL(0) - F\\) - w0
R[nL - F'0

R] + wH F'0
L + dl 

dt 

Eq. (21) shows that there is a contribution at the interface proportional to the jump in the 

derivative across the interface. For smooth enough functions, this is not expected to be a 

problem, since the difference between the derivatives should go to zero exponentially 

fast, while the coefficient decays as O^l/N2). 

As an example of solutions computed using Algorithm I, we compute a steady 

solution of the equation ut + ux= f   x e [0,2]7 > 0. Scalar examples of one dimensional 

time dependent problems can be found in [27]. Comparisons to a variety of finite 

difference methods can be found in [37]. The initial and boundary conditions were 

chosen so that the exact steady solution is u(x) = tanh((x-1.5)/2). Fig. 1 shows the 

solution computed using three subdomains and eight points per subdomain. 

11 



Fig. 1. Steady solution of a scalar wave equation 

Convergence of the error is exponential for this problem. Fig. 2 shows the error 

plotted as a function of the Gauss polynomial order for the subdivision shown in Fig.l. 

For comparison, we have also plotted the error of the single grid multidomain method 

(20). We see that the staggered grid approximation is at least as accurate as the non- 

staggered grid approximation, and sometimes more accurate by a factor of four. 

12 
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Fig. 2. Convergence of the error for the staggered grid multidomain method compared to 

a non-staggered multidomain approximation. 

2.3 The One -Dimensional Staggered Grid Approximation for Systems 

Algorithm I can be easily extended to systems of hyperbolic equations of the form 

[Qr + F;t(Q) = 0   xe[a,b],t>0 

|Q(*,0) = Qo(*) 
(22) 

where Q and F are m-vectors. We assume that the system is hyperbolic, that is, the 

Jacobian matrix A = 3F / 3Q = ZAZ"1, where A is a real diagonal matrix. We further 

assume, as is the case for the Euler gas-dynamics equations, that the flux can be written 

13 



as F = A Q. To complete (22), we assume that appropriate dissipative boundary 

conditions are applied. 

The approximation of the system follows that of the scalar equation, except for 

the treatment of boundary and interface conditions. At an interface between subdomains 

k-l and k, there are two vector values of the interpolated solution available, Q^"1 and Q*. 

The computed flux must use these two values to allow waves to propagate through the 

interfaces. For constant coefficient linear problems, we can write 

F = AQ = ZAZ_1Q = ZAZ XQ + ZA"Z_fQ (23) 

where A* = A±|A|. The first term represents waves moving left to right, and the second 

represents waves moving right to left. An upwind approximation chooses Qk~x for the 

right going components, and Q* for the left going components to give 

F*-1 = F* =^(Q^1,Q*0) = ZA+Z-1Q^-1 + ZA-Z-1Q*. (24) 

Characteristic decompositions for nonlinear flux vectors have been addressed 

extensively in the finite difference community (Ref. [20]). We have considered flux 

vector splitting and flux difference splitting. 

The resolution of the jump at the subdomain interfaces can be easily viewed using 

flux vector splitting. The flux is decomposed into a right going and a left going flux, 

F(Q) = F+(Q) + F"(Q). The splitting is done so that the Jacobian matrix of F+ has only 

positive eigenvalues and the Jacobian of F has only negative eigenvalues. Examples are 

the Van Leer [38] splitting and the more recent splitting of Liou and Steffen [30]. Using 

flux vector splitting, the positive flux is evaluated using the solution from the left, the 

negative flux is computed using the value from the right 

^■1 = ^ = ^(Q*r1,QS)^F+(Q5ri)+F-(QS). (25) 

Van Leer's Flux vector splitting was used in [18] to compute the flux derivatives at 

interfaces for the advective part of the Navier-Stokes equations. 

14 



As an interface treatment, flux vector splitting has the desirable feature that the 

positive and negative fluxes can be computed within a subdomain without regard to the 

neighbors. The final flux computation, (25), requires only a simple sum of the boundary 

fluxes. However, we found that the Van Leer splitting applied to the staggered grid 

scheme was unstable for some long time integrations. 

As an alternative method to compute the interface flux, we have chosen to use an 

approximate Riemann solver. This approach was also taken by Giannakouros and 

Karniadakis[15]. Several solver choices are possible, but we have used Roe's [34] solver 

with the entropy fix. Formally, given the two states Q^"1 and Q*, we write 

^(Qjr1,QS)=|(F(Q5r1)+F(Q5))-}RlAlR"1(QS-Q5rI) (26) 

where R is the matrix of the right eigenvectors of the Jacobian of F, computed using the 

Roe-average of Q^"1 and Q*. The eq. (26) is modified to correct the entropy across sonic 

points [20]. 

Boundaries can be considered as interfaces between the computed solution and 

the solution assumed to exist outside the computational region, if fully known. Thus, we 

can compute the boundary flux by 

Fl = ?(Q(a,t),Ql) (27a) 

on the left, and 

FK
N=T(QK

N,Q(b,t)) (27b) 

on the right, where Q(a, t) and Q(b, t) represent the exterior solution at the boundaries. 

Other ways to compute the boundary flux when the full exterior solution is not known 

will be described in regard to specific problems in Section 4. 

In summary, for systems of equations, we have the following algorithm: 

15 



AlgorithmII. (Staggered Grid, System, ID) 

1.Interpolate the Gauss-point solution values to the Lobatto 
points: 

Compute the matrix-vector product Q* = I*Q* by eq. (11) for each subdomain. 

2. Compute the interior point fluxes: 

F;=F(Q5) j = l,2,...,N,k = l,2,...,K 

3. Apply the interface conditions: 

F*W~
1=F5=J(Q^1,Q0*) k = 2,...,K 

3. Apply boundary conditions at left and right 

4. Compute spatial derivatives at Gauss points: 
Compute the matrix-vector product by eq. (9). 

5. update the solution at the Gauss points 

dQ-+m 

dt 
+ F;+1/2=0 j = 0,l,...N-l,k = l,2,...,K, 

repeating Steps 1-4 for each Runge-Kutta stage. 

6.   Repeat  Steps  1-5 until done 

As an example of the application of Algorithm II, we solve the problem 

Q, + Fr=0   jte[-l,4],f>0 

Q = 
1 2 
2 1 Q 

(28) 

Further examples that model unsteady acoustic propagation, including acoustic 

propagation in a quasi-one-dimensional nozzle, can be found in [27]. The initial 

condition for (28) was chosen to be a Gaussian pulse with the peak at x = 1 

QUO): 
-120-1)2 

0 (29) 

We specify boundary conditions so that the waves pass through the boundaries without 

reflection, 

16 



M(-U)-v(-l,f) = e-12('~2)2 

U(4j) + v(4,t) = e-u°-3t)2 
(30) 

The solution was computed using four subdomains of equal length and with the 

same number of points within each subdomain. For the time discretization, we have used 

both the Williamson [39] 3rd order and the Carpenter and Kennedy [8] 4th order schemes. 

Fig. 3 shows the solution at time t = 0.75. For a small enough time step, spectral decay 

of the error is observed, as shown in Fig. 4. To study the temporal accuracy, we 

computed the solution on the finest grid, N = 25, so that the spatial accuracy was close to 

rounding error. A plot of the errors as a function of At for the third and fourth order 

methods is shown in Fig. 5. A least squares fit to the errors indicates a slope of 2.995 for 

the third order and 3.998 for the fourth order method, so the expected high order temporal 

accuracy is obtained. We also see that over the At range shown, the fourth order method 

is about two orders of magnitude more accurate than the third. This is consistent with the 

observations of [8]. 
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Fig. 3. Solution of the system (27) at t = 0.75 using four subdomains 
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3 The Two-dimensional Approximation. 
We now describe the approximation of the Euler equations of gas-dynamics in 

conservative form, 

dQ    d¥    dG 
■ + — + — = 0, 

dt     dx     dy 
(31a) 

where Q is the vector of solution unknowns and F(Q) and G(Q) are the advective flux 

vectors 

Q = 

~ p~ pu pv 
pu 
pv 

F = 
p + pu2 

puv 
G = 

puv 
p + pv2 

Pe. u(pe + p) _v(pe + p)_ 

(31b) 

We assume y = 1.4 and that pe = p/ (y-1) + (u2 + v2) / 2. For axisymmetric problems, 

such as the transonic flow in the converging-diverging nozzle discussed later, we 

interpret x as the axial coordinate and y as the radial coordinate. We then add to the right 

hand side of (31a) the vector 

H = 
1 

pv 
puv 

"I 
pv~ 

v(pe + p) 

(32) 

3.7 Mapping in two space dimensions. 

In two space dimensions, we subdivide a computational domain, Q, into 

quadrilateral subdomains, Qk, k = \,2,...,K. Figure 6 shows an example of a division of a 

region into four subdomains. We make three assumptions about the subdivision in this 

paper. First, we allow subdomains to intersect only at a point or along an entire side. 

Second, we assume that the approximation is conforming, so that grid lines coincide 

across subdomain interfaces. Finally, we assume that the subdomain boundaries do not 

move in time. In the discussion that follows, we will make the assumption that the same 

polynomial order is used in each space direction and for each subdomain. In practice, the 
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number grid points can vary, as long as the approximation remains conforming at 

subdomain interfaces. 

Fig 6. Diagram of a subdomain decomposition in 2D 

Subdomains are mapped onto the unit square by an isoparametric mapping. Let 

the vector function g(s), 0< s <1 define a parametric curve. Define also the polynomial of 

degree N that interpolates g at the Gauss-Lobatto points to be 

ns)=fjg(s]yj(s). (33) 

Four such polynomial curves, Tm(s), m = 1,2,3,4, counted counter-clockwise, bound each 

subdomain. We map each subdomain onto the unit square by the linear blending formula 

xN(X,Y) = (\-Y)Tl(X) + YT,(X) + (l-X)T4(Y) + XT2(Y) 

-x1(l-X)(l-Y)-x2X(l-Y)-x3XY 

where the x/s represent the locations of the corners of the subdomain, counted counter- 

clockwise. 

Under the mapping Qk ^ [0,l]x[0,l] given by (34), the Euler equations (31) 

become 

9Q    1 —^ + — 
dt   J 

3F    dG 
dX+ dY 

= 0 (35a) 

where 
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(35b) 
F = ^F-^G   G = -y%F + xx'G 

J(X,Y) = xxyY -xYyx 

Since we assume here that the subdomain boundaries do not move in time, we can write 

(35a) as 

9Q    3F(Q)    3G(Q) 
dt' + ' dX 

■ + ■ 
BY 

0 (36) 

where Q = /Q and the fluxes are still defined by (35b). 

3.2. The staggered grid 

A fully staggered grid is used in two space dimensions. A schematic of the grid 

on a single subdomain is shown in Fig. 7. The grid is the same as the staggered grid 

proposed by Bernardi and Maday [2] for the solution of the incompressible Navier-Stokes 

equations. In what follows, we will ignore superscripts that denote which subdomain is 

being considered, unless necessary. 

Y 
1 

1 i 1 
1 ■ 

1 
i 

1 
T 1 

1 

_1_ 
1 

1 
1 

1 1 
1 1 

(i+l/2,j+l) 
■o 

(i+lj+1/2) 

X 

Fig. 7. Diagram of the fully staggered grid in two space dimensions. 

Points   of   type   "a"   in   Fig.   7   represent   the   Gauss/Gauss   points 

(Xi+in,YJ+U2),i,j = 0,1,---,N-1. The grid that results from these points is the tensor 

product of the one dimensional Gauss grid defined in (1). We approximate the solution 
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and the transformation Jacobian at the Gauss/Gauss points, and denote them by 

Qi+i/2,;+i/2 md Ji+m,j+m = J(Xi+m,j+i/2>Yi+ii2.j+m)- From these' we compute the Gauss 

point values Q;+1/2J+1/2 
=^+i/2j+i/2Q;+i/2j+i/2- Finally, the interpolant of the solution 

through the Gauss points is a polynomial in PN_: N_x = PN_Y ® PN_1: 

Q(X,Y) = £f Q!+1/2,+1/A+1/2(X)Wy) 07) 
i=0 ;=0 

The   points   of  type   "b"   in   Fig.   7   form   the   Lobatto/Gauss   grid 

(Z;,Fi+1/2),i,j = 0,1,...,N. On this grid are evaluated the horizontal flux vector, F and 

the metric terms yy and xy . The metric terms are computed as dyN(Xi,Y-+l/2) I dY and 

dxN(Xi,Yj+l/2)fdY. At points interior to a subdomain, the horizontal flux is computed 

by 

F,-.;+i/2 =y?(Xi^+W2)F(ö(X^ ,        (38) 

where Q is a polynomial of the type (37) that passes through the values 

Qi+i/2,;+i/2 / Ji+mj+m- The computation of the flux at boundary and interface points is 

described in the next sub-section. 

The vertical flux and the derivatives yx and xx are computed on the 

Gauss/Lobatto grid, marked by "c" on Fig. 7. The points on this grid are 

(Xi+U2,Yj), i,j = 0,1,...,JV-1. The metric terms are computed as dyN(Xi+ll2,Y}) I dX and 

dxN(Xi+1/2,Yj)/dX. The vertical flux is computed at interior points by 

Gi+1/2J- = -^(^+i/2^;)F(ö(X;+1/2,F;)) + ^(X!+1/2,F;)G(ö(i;.+1/2,F;))       (39) 

and at boundary points as described in Section 3.3. 

It may appear that to define quantities on three different grids would lead to a 

significantly more complicated method than a single grid Lobatto approximation, This 

turns out not to be the case. The definitions of the fluxes on the staggered grid by (38) 

and (39) mean that the reconstruction procedure, i.e., the interpolation of the solution 
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needed to compute the fluxes at the Lobatto points, is not a two-dimensional operation. 

Rather, it is the less expensive sequence of one-dimensional interpolations, given by (11). 

The values of the solution vector required to compute the flux vectors are actually 

N-l N-l 

Q(Z;,F;+1/2) - 2^^Qi'+l/2,;+l/2^/+l/2(-^i)^Jl+l/2(^,;+l/2) 
i=0 ;=0 

N-l  

=  / , Vi+l/2.>+l/2^;+l/2V-^i-' 

(40a) 
N-l 

and 

;=o 

N-l N-l 

Q(-^;+i/2'^/) - ZjZ-iQi+v2,j+mhi+i/2(Xi+m)hj+\n(Yj) 

(40b) 
N-\  

: 2-1 "i+l/2,/+l/2";+l/2 \*j) 
7=0 

since, by construction, 

3.3 Interface and boundary treatment. 

To describe how we compute the interface and boundary conditions using the 

staggered grid approximation, we will refer to Fig. 8, which schematically represents four 

subdomains and the locations at which solution and flux values are computed. Only the 

collocation points near the boundaries are marked. The circles represent the solution 

values, which are located on the Gauss/Gauss grid. The locations of the horizontal flux 

values, F; +1/2 , are represented by solid squares.   The locations of the vertical flux 

values, Gi+U2j, are marked by hollow squares. From the diagram, we see that along the 

interfaces between subdomains 1 and 2 and between subdomains 3 and 4, only the 

horizontal fluxes need to be computed. Along horizontal interfaces, like those between 

subdomains 1 and 3, only the vertical flux needs to be computed. Because the grid is 

fully staggered, the coupling is through subdomain faces only, not through the corners. 
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Fig. 8. Diagram of four subdomains showing locations near interfaces where solutions 

and fluxes are computed. Symbols:  • solution; ■ ,F; D ,G 

Fig. 8 indicates a significant advantage of the fully staggered grid over an 

unstaggered grid. In the unstaggered approximation, for example as described in [26], 

special corner algorithms must be devised to ensure correct propagation of waves through 

the corners. Each special case must be coded separately. Also, the choice of bi- 

characteristics that determines the domains of dependence becomes more complex as the 

number of subdomains/boundaries that come together at a point increases, making the 

derivation of these special cases more difficult. The staggered approximation does not 

include subdomain corners, so conditions do not have to be specified at corner points. 

Any number of subdomains can come together at a point without the need for special 

point approximations. No special code is required even for very complex subdomain 

topologies. 

The interpolation of the solution by (40) produces two solution values at an 

interface point, one from each of the two contributing subdomains.   As in the one 
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dimensional case, we do not expect these two values to coincide, except in the limit of 

infinite resolution. A single flux is calculated, as described for the one-dimensional 

problem, except that we only consider waves propagating normal to the interface. This 

normal wave approximation is common for finite difference approximations [20] and has 

been used in [18], [16] and [4] for spectral approximations. We note, however, that other 

two-dimensional wave decompositions are possible, like those surveyed in [32]. 

Physical boundaries can be viewed as interfaces between the external flow and the 

computational region. Wall boundaries can be computed by imposing an opposing flow 

that enforces zero normal momentum flux across the interface. Subsonic inflow and 

outflow boundaries can be computed by replacing the solution that would have come 

from a neighboring subdomain by the free-stream values, if they are known. If the full 

state of the exterior flow is not known, the known quantities can be specified and the 

remaining quantities can be computed by a characteristic method. Once all solution 

quantities are known on the boundary, the flux can be computed. An example of this 

approach is provided in Section 4.3. Supersonic outflow boundaries require no extra 

conditions. 

3.4 Discretization of the equations. 

Once the fluxes are computed, the spatial discretization can be made. From the 

discrete flux values are defined the polynomials 

F(X,Y) = j^YjFh]+inJi(X)hJ+m(Y) 

7J's <41> 
G(X,7) = XXG!+1/2/;+1/2(XK;(7) 

;=o j=o 

Derivatives of the interpolating polynomials are then evaluated at the Gauss/Gauss grid 

points. Like the reconstruction procedure, the differentiation of (41) can also be done as 

a sequence of one-dimensional operations 
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3F 
dX 

dG 
dY 

2^     n.j+U2   n^    i+V2' 
i+l/2,;+l/2 -1=0 

(42) 

~~ 2L\i+\P-,m*~m\*j+ll2> 
i+l/2,j+m m = 0 

Because both interpolation and differentiation operations must be performed at 

each step, the total work of the staggered grid method is twice that of a method that only 

uses the Lobatto grid. The new method requires the same amount of work, however, as 

the cell averaged method [16]. The reconstruction procedure in two space dimensions for 

the cell averaged method is more complex than in one, and requires the same amount of 

work as both the interpolation and differentiation operations here. 

Finally, from the definitions (37)-(42), the semi-discrete approximation for the 

solution unknowns can be written as 

dQ 

dt 
+ 

i'+l/2,;'+l/2 

3F    3G 
dX+ dY 

= 0, 
I+1/2J+1/2 

i = 0X...,N-l 
j = 0,l,...,N-V (43) 

Eq. 43 can be integrated in time as described in Section 2.2. 

3.5 Properties of the staggered grid approximation. 

The staggered grid approximation is both conservative and free-stream preserving. 

A net gain or loss of Q is determined only by the flux through the exterior boundaries. If 

the solution is constant in space, then the solution must remain constant in time, even in 

the presence of a spatially varying mapping. 

We first show that the staggered grid approximation is conservative. It is 

sufficient to consider the four subdomains shown in Fig. 8. Let the quadrature weights 

wi+m,i1j+m be defined so that 

j \PdXdY = ttPnnjMWwrfjM    VPeP„_ l,iV-l 
(44) 

o o i=0 ;=0 
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By exactness of the quadrature, the sum of eq. (43) times wi+mr\j+m over all the points 

within a subdomain is 

N-l 

= 2 
l l 

-11 

Wf+l/27? y+1/2 

i+1/2,7+1/2 

3F    dG 
dX+ dY Wi+m7!} +1/2 (45) 

o o 

3F    dG 

dX+ dY 

i+l/2,;'+l/2 

tsar 

Thus, for each subdomain, 

Jr 

ii i i 

J J QdXdY = - J F(l, 7) dY + J F(0, F)J7 
o o (46) 

-JG(X,l)dX + \G(X,0)dX 

When (46) is summed over all subdomains, the interior integrals cancel so that only the 

boundary contributions remain: 

4    1   1 

— Jj]]QkdXdY = ](F\0,Y) + F\0,Y))dY-j(F2(l,Y) + F4(l,Y))dY 
dt k=l o o o o 

i i 

\(G\X,0) + G4(X,0))dX-\(G\X,l) + G2(X,l))dX 

(47) 

The staggered grid approximation is also free-stream preserving, which means 

that the isoparametric spatial mappings do not introduce false source terms. It is 

sufficient to consider the approximation within one subdomain, since all derivatives are 

computed locally by subdomain. If we take F(Q) = G(Q) = 1, then the approximation 

(43) becomes 

dQ 
dt 

+ 1 
£+-1/2,7+1/2 

^w~<)+!u"+*") 0 (48) 
i+l/2,i+l/2 

Since xN e P N,N' 
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dx dY = S^(xi+1/2K(F;+1/2) = |-f^ 3 (d*N) 
~     2jXk/k[Xi + l/2)tl{Yj + l/2)-   \y\ -Jy 

A+1/2J+V2       W=0 OZ V. OA   Ji+U2,j+V2 

(49) 

so that, 

j = Q,l,...,N-l pUj 

£+1/2,7 + 1/2 

4. Examples 
In this section, we use the staggered grid approximation to compute three steady 

flow problems. The first problem is subsonic flow from a point source, which has an 

exact, analytic solution. We use this solution to show that exponential convergence is 

obtained. The second problem is a subsonic flow over a circular bump in a channel. 

Although there is no exact solution for this problem, we show that the errors due to 

entropy generated along the curved wall decay exponentially fast. The final problem 

computes a transonic flow in an axisymmetric converging-diverging nozzle. That 

solution is compared to experimental data. 

4.1 Subsonic Point Source Flow 

As our first example, we consider the flow of a steady, irrotational flow exiting 

from a point. This flow can be solved exactly by a hodograph transformation [12]. The 

streamlines are radial, and level curves of the Mach number, pressure and density are 

circles centered on the source. We will compute this flow in two geometries. The first 

represents a flow in an expanding duct, where two streamlines are chosen as walls of the 

duct. The second geometry, a square with five circles cut out of its interior, is included to 

show that the method can be used to compute a flow in a complex, multiply connected 

geometry. 

The first geometry represents steady flow in an expanding two-dimensional duct 

with straight walls. The lower wall was chosen to be the line y = 0 and the upper wall was 
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the line y - x tan(rc/6), for x between 1 and 1.5. The exact solution chosen sets the Mach 

number at the lower left corner of the domain to be M - 0.6. 

We examine solutions for three subdomain decompositions, each having four 

subdomains. Fig. 9 shows the three decompositions. In the first (Grid I), the subdomain 

boundaries are straight lines so that the mappings defined by (34) become bi-linear 

transformations. The second and third decompositions are included to study the effect of 

curved subdomains. Both perturb the Grid I by a sine wave of amplitude 0.1 into 

"bulging" (Grid II) and "wedging" (Grid III) decompositions, named so in [36]. 

Fig. 9. Three subdomain decompositions for the diverging duct problem. 

Wall conditions, applied as described in the previous section, are specified on the 

top and bottom boundaries. The left boundary is a subsonic inflow boundary. For that, 

we specify the exact solution as the incoming condition for the Riemann solver. The 

right boundary is a subsonic outflow boundary, and again the exact solution is used to 

specify the external flow. A perturbation of the exact solution was used as the initial 

condition. 

Fig. 10 shows the computed, steady Mach number contours for Grid I. In that 

figure, and in those following, contour lines are plotted using solution values interpolated 

from the Gauss points to the Lobatto points using (37). The grids in Fig. 9 show those 

Lobatto points. The solutions are represented interior to each "cell" bounded by the grid 

lines. The interpolation is done for display reasons, since a plot using the Gauss points 

29 



would show gaps between the subdomains, a result of the fact that the solution is not 

defined at the interfaces. Plotting the interpolant does give some visual indication, of the 

size of the solution jumps at the interfaces. 

Fig. 10. Mach contours for flow in a diverging duct. 

The staggered grid approximation is exponentially convergent for the point source 

flow in the duct. For Grids I-III, Fig. 11 shows the weighted L2 error in the density as a 

function of the polynomial order used in each subdomain. The most marked observation 

is that for this problem, the error and the convergence rate are not sensitive to the 

presence of curved interfaces. In fact, the convergence rate for the "bulged" 

decomposition is slightly higher than for the straight sided subdomains. This contrasts 

strongly with the observations of [36], which considered the approximation of second 

order problems. There, the presence of even slightly curved interfaces increased the error 

by orders of magnitude. 
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Fig. 11. Convergence of the error for the three grids of Fig. 9. 

As our last example of the point source flow, we use the grid shown in Fig. 12. 

The geometry, a square with five circles cut out of its interior, was chosen to show that 

the method can be used to compute on a complex, multiply connected region. Twenty- 

four subdomains were used to cover the computational domain. Up to seven subdomains 

share a common corner point without difficulty, because such points are not included in 

the discrete approximation. 
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Fig. 12. Grid for point source problem. 

The boundary conditions were chosen so that the exact steady solution was radial 

flow with the point source at the center of the middle circle of Fig. 12. The center cutout 

circle was specified as an inflow boundary, with the conditions chosen so that the Mach 

number of the incoming flow was M = 0.6. The boundary conditions along the remaining 

cutout circles were either inflow or outflow, depending on the direction of the normal 

velocity. The square outer boundary was an outflow boundary. For all inflow/outflow 

boundaries, the exact solution was used to provide the external flow values required by 

the Riemann solver. 

In Fig. 13, we plot the exact and computed Mach number contours for the solution 

of the point source flow. For the grid shown in Fig. 12, the contour lines of the exact 

solution, which are plotted with dashed lines, are coincident with the solid contour lines 

of the computed solution. 
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Fig. 13. Solution of the point source flow for the goemetry shown in Fig. 12. The exact 
solution is plotted with dashed lines, the computed with solid lines. 

The approximation on the grid of Fig. 12 converges exponentially. Fig. 14 shows 

the maximum error in the density as a function of the polynomial order in each 

subdomain. We see that doubling the number of points per subdomain causes the error to 

decay by approximately two orders of magnitude. 

4.2 Subsonic Flow Over a Circular Bump in a Channel 

The second example is that of a Mach 0.3 subsonic flow over a circular bump in a 

channel. The geometry and grid with N = 9 is shown in Fig. 16. Wall boundaries were 

specified at the top and the bottom. At the left and right boundaries, the uniform flow 

free stream solution was specified as input to the Riemann solver. Initially, the free 

stream solution was specified everywhere, and then the boundary conditions were 

imposed. This problem does not have an exact analytic solution. However, since the 

incoming flow was chosen to be irrotational and isentropic, the entropy should be zero 

everywhere.    The fact that this is not the case can be the result of the spatial 
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approximation and to the normal wave model used at the interfaces and boundaries for 

calculating the flux [32]. 
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Fig. 14. Convergence of the density error for the solution shown in Fig. 13. 

Solution contours of the Mach number for the grid shown in Fig. 15 are presented 

in Fig. 16. The wall pressure along the bottom, plotted as the pressure coefficient 

Cp = {p-\)l y, is shown in Fig. 17. Finally, a convergence study of the entropy errors 

as a function of N is shown in Fig. 18. In that figure, we plot the maximum value of the 

quantityX = pip7 -1, which should be zero everywhere. We see that the error due to 

entropy generation converges exponentially fast. 
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Fig. 15. Geometry and grid for N = 9 for the flow over a circular bump in a channel. 
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Fig. 16. Mach number contours for the flow over a circular bump in a channel. 
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Fig. 17. Graph of the wall pressure along the bottom boundary of Fig. 17. 
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Fig. 18. Convergence of the entropy generated by the staggered grid approximation. 

4.3 Transonic Flow in a Converging-Diverging Nozzle 

As an example of a transonic problem, we compute the flow in an axisymmetric 

converging-diverging nozzle. We have chosen the nozzle used in the experimental 

investigation of Cuffel et al. [13], which was designed to show significant two 

dimensional effects. The nozzle consists of a converging section with half angle of 45° 

and a diverging section with half angle of 15°. The experimental tests were done in air 

with a stagnation temperature of 540 R and stagnation pressure of 70 psia. The nozzle 

geometry and the grid that were used in our computations are shown in Fig. 19. Note that 

we have varied the number of points per subdomain in this problem. 

To match the experimental conditions, we scaled the equations (31) and (32) by 

p-p*/ptol,p = p*/ptol, where the '*' represents the dimensional quantity. Under this 

scaling, the temperature and entropy are T = T* I Ttol,Slot =0. The initial condition for 

the computation was the exact solution of the quasi-one-dimensional nozzle that has same 
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area as the two-dimensional nozzle. For the inflow condition at the left boundary, we 

specified that the tangential velocity be zero, the entropy be zero, and the temperature be 

unity. At the right boundary, the outflow is supersonic, so that no boundary condition is 

necessary. 

^ 

N 
^ 

^ N 1 1 

Figure 19. Grid for the 45°-15° converging-Diverging Nozzle 

Since not all of the external flow values are known at the left boundary, 

particularly the inflow velocity, it is not convenient to use (26) to impose the boundary 

condition. Instead, we use the following characteristic-like method that allows us to 

specify only the parameters that are known. The fact that the inflow condition sets v = 0 

means that the flow is essentially one dimensional. Then we can write a left-going 

Riemann invariant for the flow. In terms of the Mach number, M, and the sound speed, a, 

that invariant must satisfy 

( 
M- 

7-1 
_ n- = n 

computed comp. M. comp. 
7-1 

(51) 

where the computed quantities represent values interpolated to the boundary by the 

reconstruction procedure.   The boundary conditions fix the total temperature and the 
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entropy. With the scaling given above, this fixes the total sound speed at am = -Jy. Then 

the scaled sound speed and the Mach number are related by 

1 + ^M2 
(52) 

2 

Combining (51) and (52), an equation for the Mach number at the boundary can be 

written 

f 2   ^ 
M — 

I + ^M2V 
2 

y-1 computed ' W -^ / 

Equation (53) can be written as a quadratic equation in the Mach number and 

solved directly. Once the inflow Mach number is known, the sound speed can be 

computed using (52). From the Mach number, the sound speed, tangential velocity and 

the entropy, all remaining variables can be computed. From the full state on the 

boundary, the boundary flux can be evaluated. 

Results computed for the nozzle are shown in Figs. 20 - 23. Contours for the 

pressure are shown in Fig. 20. A comparison of the Mach contours and measured Mach 

number in the neighborhood of the nozzle throat is shown in Fig. 21. We see good 

agreement between the computed Mach contours and the measured values for Mach 

numbers up to about 1.6. We note that the discrepancies between the computed and 

measured Mach numbers are consistent with the discrepancies observed with the 

solutions of the inviscid flow solvers reported in [13]. Finally, in Figs. 22 and 23, we 

show a comparison between the computed and measured values of the pressure and Mach 

numbers along the upper wall of the nozzle. 
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Fig. 20. Pressure and Mach contours for the nozzle flow. 
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Figure 21. Comparison of computed and measured Mach contours 
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Fig. 22. Comparison of computed and measure wall pressure as a function 
of distance from the nozzle throat. 
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Fig. 23. Comparison of computed and measured Mach numbers as a 
function of distance from the nozzle throat. 
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5 Concluding Remarks. 
We have presented a new, staggered-grid Chebyshev spectral multidomain 

method for the solution of inviscid compressible flow problems. The solutions are 

defined at the nodes of a Gauss quadrature rule, while the fluxes are evaluated at the 

nodes of a Gauss-Lobatto rule. We have applied the method to one and two dimensional 

problems, but it should extend directly to three dimensions. 

The staggered grid multidomain method for compressible flow problems has 

many desirable features. These features include 

• Conservation. 

Mass, momentum and energy are conserved globally 

• Free-stream preservation. 

A uniform, steady flow stays uniform and steady even for complex 

subdomain shapes. 

• Temporal accuracy. 

• Geometric Flexibility. 

The domain need only be decomposable into quadrilaterals. 

• Programming simplicity. 

Corners of subdomains are not included as part of the approximation. 

Special cases do not need to be coded. Subdomains have at most four 

neighbors in two space dimensions and six in three space dimensions. 

Boundary conditions require no special corner treatments. 

While the new method is flexible, there remain a few limitations. We have 

assumed that the approximation is conforming. Thus, subdomains must meet at a point 

or along a full side. Along a side, the points at which the fluxes are computed must 

coincide with their neighbors.    Also, the domain must be decomposable into 
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quadrilaterals. We expect that the first restriction can be eliminated by considering non- 

conforming approximations [31]. 

We have not considered the approximation of shocks in this paper. Methods for 

shock capturing with spectral methods that have been proposed to date include direct 

filtering [22], removal of the discontinuity plus filtering [6], Flux Corrected Transport 

methods [15], [16] and weak filtering with post-processing, [14], [17]. Shock fitting 

should also be possible [23], [28]. A thorough study of the best options is beyond the 

scope of this paper. 

We have emphasized steady-state computations in this paper. However, the 

method is applicable to time dependent problems. Some one dimensional examples are 

included here and in [27]. 

The new method is a factor of two more expensive than methods that compute 

both the solution and the fluxes on the Lobatto grid. This is due to the extra interpolation 

from the Gauss points to the Gauss-Lobatto points. FFT techniques cannot be used to 

compute either the interpolation or differentiation operations with the new method. Thus, 

the approximation order within the subdomains must be kept low enough to where matrix 

multiplication is more efficient than FFTs, a value that varies from machine to machine. 

However, while the Lobatto grid methods require point operations at subdomain corners, 

the new method requires vector operations only. We believe that the flexibility and 

programming ease of the new method compensates for the additional work. 

The new method differs from the cell average method proposed in [35], [15], and 

[16]. The cell average method requires a pointwise procedure to be performed at 

subdomain corners that is not required by this method. The reconstruction and 

differentiation operations performed are different.    In one space dimension the work 

required by the staggered grid method is twice that of the cell average method. However, 

the reconstruction procedure for the cell average method in two space dimensions 

requires two matrix multiplication operations per line in each direction, as does the 
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staggered grid method, so the work is equivalent in two space dimensions. In three space 

dimensions, the staggered grid method will require only two thirds the work of the cell 

average method, making it more efficient in that case. 
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